CBSE Summary कक्षा-10 अध्याय-6 त्रिभुज (Triangle)

Doorsteptutor material for CBSE is prepared by world's top subject experts: fully solved questions with step-by-step explanation- practice your way to success.

Download PDF of This Page (Size: 148K)

त्रिभुज (Triangle)

  • जिन दो त्रिभुजों के आकार और माप समान होते हैं, सर्वांगसम त्रिभुज कहलाते हैं।

  • समरूप आकृति – जिन दो आकृतियोंके आकार बिल्कुल समान हो परन्तु आमाप समान हो या नहो, समरूप आकृतियाँ कहलाती हैं।

  • सभी सर्वांगसम आकृतियों के युग्म समरूप होते हैं परंतु सभी समरूप आकृतियाँ सर्वांगसम होना आवश्यक नहीं है।

  • समान भुजाओं वाले बहुभुज समरूप होते हैं, यदि उनके संगतकोण बराबर हों तथा संगतभुजा एँसमानुपाती हों।

  • यदि कोई बहुभुज किसी दूसरे बहुभुजके समरूप हो और दूसरा बहुभुज अन्य तीसरे बहुभुजके समरूप हो, तो तीनों बहुभुज समरूप होते हैं।

समकोणिकत्रिभुज – जिस त्रिभुजके संगतकोण बराबर हों।

  • दो समकोणिक त्रिभुजोंकी संगतभुजाएँ हमेशा समानुपाती होती हैं।

  • यदि त्रिभुजकी किसी एक भुजाके समांतर कोई अन्य भुजा खींची जाए, तो अन्य दोनों भुजाएँ समान अनुपात में विभाजित हो जाती हैं।

  • यदि कोई रेखा त्रिभुजकी दो भुजाओंको समान अनुपात में विभाजित करती है, तो वह रेखा तीसरी भुजा के समांतर होती है।

समरूपताकी कसौटियाँ -

  • AAA (कोण-कोण-कोण) कसौटी – जब त्रिभुजके तीनों संगतकोण बराबर हों, तो भुजाएँ बराबर या समानुपाती होती हैं जिससे त्रिभुज समरूप होते हैं।

  • AA (कोण-कोण) कसौटी – जब त्रिभुजके दो संगतकोण बराबर हो, तो तीसरे कोणभी बराबरहोंगे जिससे दोनों त्रिभुज समरूप होंगे।

  • SSS (भुजा-भुजा-भुजा) कसौटी – जब दो त्रिभुजोंकी संगत भुजाएँ समानुपाती हों, तो कोण भी समान होते हैं जिससे त्रिभुजसमरूप होते हैं।SAS (भुजा-कोण-भुजा) कसौटी – जब दो त्रिभुजों का एक-एक कोण बराबर हो और इन कोणोंको अंतर्गत करने वाली भुजाएँ समानुपाती हो, तो त्रिभुज समरूप होते हैं।

  • RHS – दो त्रिभुज समरूप होते हैं यदि एक त्रिभुजका कर्ण तथा एक भुजा दूसरे त्रिभुज के कर्ण तथा एक भुजा एकही अनुपात में हो।

  • दो समरूप त्रिभुजों के क्षेत्रफलोंका अनुपात उनकी संगतभुजाओं के अनुपातके वर्गके बराबर होता है।

  • यदि समकोण त्रिभुज में वाले शीर्षसे कर्ण पर लंब डाला जाएतो लंबके दोनों ओर बने त्रिभुज समरूप होते हैं और सम्पूर्ण त्रिभुज भी इन्ही के समरूप होता है।

  • पाइथागोरस प्रमेय – समकोण त्रिभुजके कर्णका वर्ग अन्य दो भुजाओं के वर्गों के योग के बराबर होता है।

  • एक आयत का विकर्ण स्वयं से उतनाही क्षेत्रफल निर्मित करता है, जितना उसकी लम्बाई और चौड़ाई से निर्मित होता है अर्थात आयतके विकर्णसे बने वर्गका क्षेत्रफल इसकी लम्बाई और चौड़ाईसे बने वर्गोंके क्षेत्रफलों के योगके बराबर होता है।

  • यदि त्रिभुजकी एक भुजाका वर्ग अन्यदो भुजाओं के वर्गोंके जोड़ के बराबर होतो बड़ीभुजा के सम्मुख समकोण होता है।